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ABSTRACT
Graph neural networks are designed to learn functions on
graphs. Typically, the relevant target functions are invariant
with respect to actions by permutations. Therefore the design
of some graph neural network architectures has been inspired
by graph-isomorphism algorithms.

The classical Weisfeiler-Lehman algorithm (WL)—a
graph-isomorphism test based on color refinement—became
relevant to the study of graph neural networks. The WL test
can be generalized to a hierarchy of higher-order tests, known
as k-WL. This hierarchy has been used to characterize the
expressive power of graph neural networks, and to inspire the
design of graph neural network architectures.

A few variants of the WL hierarchy appear in the litera-
ture. The goal of this short note is pedagogical and practical:
We explain the differences between the WL and folklore-WL
formulations, with pointers to existing discussions in the liter-
ature. We illuminate the differences between the formulations
by visualizing an example.

Index Terms— Graph neural networks, Weisfeiler Lehman

1. INTRODUCTION

In the past few years, deep learning has completely revolu-
tionized entire fields: Convolutional neural networks have
changed the landscape of computer vision, and recurrent neu-
ral networks significantly improved the state of the art in
natural language processing [1]. Deep learning is now being
applied, with different degrees of success, to more general
problems and datasets, arising from scientific and industrial
applications. There is a natural flow in the field towards the
study of geometric deep learning beyond Euclidean data [2],
where the network architecture encodes relevant theoretical
properties of the problems they are trying to solve (symme-
tries, invariances, conservation laws). This is best exemplified
by data structures like manifolds and graphs.
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Graphs are one of the most common abstractions to rep-
resent data, and unsurprisingly, the study of graph neural net-
works (GNNs) is a rapidly growing field. There are many
types GNN architectures, based on message passing [3, 4],
convolutional filters [5, 6], generalization of spectral methods
[7], invariant linear functions [8, 9], to name a few.

Graph neural networks are typically formulated as func-
tions that take a graph as input and output a representation
of the graph. The representation usually takes the form of an
embedding of the graph nodes in Euclidean space. One fun-
damental property of most graph neural networks is the in-
variance (or equivariance) with respect to permutations of the
input. The philosophy is that the learned representation of the
graph should be consistent with any relabeling of the nodes.
This sometimes restricts the class of functions that graph neu-
ral networks can express, and constrains the architectural de-
sign of the neural network. In a nutshell, there seems to be
a trade-off between invariance and expressibility. Being able
to approximate invariant functions is closely related to be-
ing able to decide whether any pair of graphs are isomorphic,
which is not an easy problem [10].

Graph isomorphism is a long-standing problem in the-
oretical computer science. It was suspected to be NP-hard
until quite recently, when Lázló Babai produced a quasi-
polynomial time algorithm to decide whether two graphs
are isomorphic [11]. There are other, less sophisticated, tests
for graph isomorphism that don’t fully characterize graphs
modulo isomorphisms, but can distinguish large sets of non-
isomorphic graphs.

The Weisfeiler-Lehman (WL) algorithm is a classical
isomorphism test based on color refinement [12]. Each node
keeps a state (or color) that gets refined in each iteration by
aggregating information from their neighbor’s states. The
refinement stabilizes after a few iterations and it outputs a
representation of the graph. Two graphs with different repre-
sentations are not isomorphic. The test can uniquely identify
a large set of graphs up to isomorphism [13], but there are
simple examples where the test tragically fails—for instance,
two regular graphs with the same number of nodes and same
degrees cannot be distinguished by the test, even if one is
connected and the other one is not.

A natural extension of the test provides a hierarchy of al-
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gorithms. Instead of keeping the state of one node, they keep
the state of k-tuples of nodes. These algorithms are called
k-dimensional Weisfeiler-Lehman tests or k-WL. There are
two main versions of the algorithm with slightly different up-
date rules, the one studied in [14] has recently been named k-
folklore-WL (k-FWL) [15], while the one studied in [16, 17]
is known as k-WL.

The power of k-WL and k-FWL to distinguish non-
isomorphic graphs is well understood. Very beautiful math-
ematical work has characterized their discriminative power
in terms of the satisfiability of quantified logical formulas on
finite variables and pebble games [14, 16], and in terms of the
Sherali-Adams linear programming hierarchy [16, 18]. We
refer the reader to the very comprehensive book by Martin
Grohe [17].

The WL hierarchy of graph isomorphism tests has shown
to be a great inspiration to define functions on graphs, in par-
ticular graph kernels [19, 20], and graph neural network ar-
chitectures [15, 21, 9]; and it has been proven to be a power-
ful tool to theoretically analyze the expressive power of graph
neural networks [22, 15, 10].

In this short note, we explicitly state the differences be-
tween the test formulations, and we point out the literature of
graph neural network inspired by the WL hierarchy, comple-
menting the very nice survey by Sato [23].

2. SETTING AND NOTATION

We consider undirected graphs G = (V,E,XV ), where V =
{1, . . . n} := [n] is the set of vertices; E ⊆ V × V is the set
of vertices satisfying (u, v) ∈ E if and only if (v, u) ∈ E;
and XV is the set of node features: For all v ∈ V Xv ∈ Rd.
The neighbors of a vertex v is NG(v) = {w : (v, w) ∈ E}.
Graphs without node features can be represented either by
taking Xv = 1 for all v ∈ V , or assigning a unique identifier
for each node. In Section 3.5, we focus on the former set-
ting where nodes are anonymous, followed from the original
formulation of WL algorithm. However, we do point out that
the latter setting is shown to be more powerful by allowing
non-anonymous node features [24].

We say G = (V,E,XV ) and G′ = (V ′, E′, X ′V ) are iso-
morphic if there exists a relabeling of the nodes of G that
produce the graph G′. In other words, they are isomorphic
if there exists a permutation Π ∈ Sn so that ΠV = V ′,
ΠE = E′ where Π (u, v) := (Πu,Π v) and ΠXV = X ′V
where ΠXv = XΠv .

The Weisfeiler-Lehman test keeps a state (or color) for ev-
ery node (or tuples of nodes denoted by ~v = (v1, . . . , vk) ∈
V k in its k-dimensional versions). It refines the node states
by aggregating the state information from their neighbors. In
order to compute the update, WL uses an injective hash func-
tion defined in different objects modulo equivalence classes.
In particular, for all v, w ∈ V hash(Xv) = hash(Xw) iff
Xv = Xw. For ~v = (v1, . . . vk), ~v′ = (v′1, . . . v

′
k) we de-

fine the hash function such that hash(G[~v]) = hash(G[~v′]) iff
(1) Xvi = Xv′i

∀i ∈ [k]; and (2) (vi, vj) ∈ E iff (v′i, v
′
j) ∈

E′,∀i, j ∈ [k].
We use the notation {{·}} to denote a multiset. Two mul-

tisets are equal (and have the same hash value) if they have
the same elements with equal multiplicities. In practice, this
is implemented by sorting the elements and applying the hash
function on the sorted values. Two tuples have the same hash
value if and only if the hash of their respective (ordered) en-
tries coincide. Finally, two states produce the same refinement
(c`v)v∈V = (c`

′

v )v∈V if the level sets coincide.

3. WEISFEILER LEHMAN VARIANTS

3.1. 1-WL (color refinement)

The classical WL (or 1-WL) test [12], keeps a state for each
node that refines by aggregating their neighbors state. It out-
puts an embedding of the graph that corresponds to the state
of every node. We say that the WL succeeds at distinguishing
a pair of non-isomorphic graphs G,G′ if WL(G) 6= WL(G′).

Algorithm 1-WL (color refinement)
Input: G = (V,E,XV )
1. c0

v ← hash(Xv) for all v ∈ V
2. repeat
3. c`v ← hash(c`−1

v , {{c`−1
w : w ∈ NG(v)}}) ∀v ∈ V

4. until (c`v)v∈V = (c`−1
v )v∈V

5. return {{c`v : v ∈ V }}

The WL algorithm successfully distinguishes most pairs
of graphs [13], but it fails to distinguish some basic examples,
such as all regular graphs on n nodes and degree d. In the con-
text of GNNs, [15] and [22] show that under the anonymous
setting, if fθ is a function implemented by a message passing
neural network (MPNN), then fθ(G) = fθ(G

′) for all G,G′

such that WL(G) = WL(G′). In particular, MPNNs cannot
express some trivial functions, such as the number of con-
nected components of a graph, given that the graph does not
have node features and Xv is taken as the same for all nodes.

3.2. k-WL

The k-dimensional Weisfeiler Lehman test extends the test to
coloring k-tuples of nodes. It is defined as:

Algorithm k-WL (k ≥ 2)
Input: G = (V,E,XV )
1. c0

~v ← hash(G[~v]) for all ~v ∈ V k

2. repeat
3. c`~v,i ← {{c`−1

w : w ∈ Ni(~v)}} ∀v ∈ V k, i ∈ [k]

4. c`~v ← hash(c`−1
~v , c`~v,1, . . . c

`
~v,k) ∀~v ∈ V k

5. until (c`~v)~v∈V k == (c`−1
~v )~v∈V k

6. return {{c`~v : ~v ∈ V k}}



The node neighborhood Ni(~v) is the set of k-tuples that
differ with ~v only in the position i. For ~v = (v1, . . . , vk) we
have

Ni(~v) = {(v1, . . . , vi−1, w, vi+1, . . . , vk) : w ∈ V } .

Inspired by k-WL, [15] propose a GNN architecture based
on a version of k-WL on sets, which is strictly more expres-
sive than MPNN.

3.3. k-FWL

The version of the k-Weisfeiler Lehman test studied by Cai,
Furer, and Immmerman [14] considers a slightly different def-
inition for the updates than the definition in Section 3.2. It
has recently been renamed as folklore-WL (FWL) by [15]. It
is computationally more efficient than k-WL and it has been
used in [9, 10, 25] to design GNN architectures.

Algorithm k-FWL (k ≥ 2)
Input: G = (V,E,XV )
1. c0

~v ← hash(G[~v]) for all ~v ∈ V k

2. repeat
3. c`~v,w ← (c`−1

~v[1]←w . . . , c`−1
~v[k]←w); ∀v ∈ V k, w ∈ V

4. c`~v ← hash(c`−1
~v , {{c`~v,w : w ∈ V }}) ∀~v ∈ V k

5. until (c`~v)~v∈V k = (c`−1
~v )~v∈V k

6. return {{c`~v : ~v ∈ V k}}

Note that c~v[i]←w is a tuple that differs from ~v in the po-
sition i, where vi is exchanged by w. In particular, if ~v =
(v1, . . . , vk) then

c~v[i]←w = (v1, . . . , vi−1, w, vi+1, . . . vk).

Thus, the node neighborhood NF
i (~v) in k-FWL is

NF
i (~v) = ((i, v2, . . .) , (v1, i, . . .) , . . . , (. . . , vk−1, i))

We can see that in k-WL, Ni(~v) is a set of n elements
where each element is k-dimensional; in k-FWL, NF

i (~v) is a
set of k elements where each element is n-dimensional. The
definition of neighborhood underpins the differences in k-WL
and k-FWL. More explanations and illustrations are given in
Section 3.5.

3.4. Comparisons between the WL variants

Remark 1. Note that 1-WL is not the same as k-WL with
k = 1. In fact, 1-WL≡2-WL.

Proof. Consider k-WL defined in Section 3.2 with k = 1:
then c1

~v,1 would be the same for all ~v (the multiset of c0
~v for

~v ∈ V 1), so the algorithm stabilizes in one step, coinciding
with the initialization. This is because in k-WL the neigh-
boring tuples do not have information about the edges of

the graph. The edges are only considered in the initialization
hash(G[~v]).

Let G = (V,E,XV ), ~v = (vi, vj) ∈ V 2 and ~v′ =
(vk, vl) ∈ V 2. After one step of 2-WL we have c1

~v = c1
~v′

if and only if (1) c0
~v = c0

~v′ , (2) {{c0
w,vj : w ∈ V }} = {{c0

w,vl
:

w ∈ V }}, and (3) {{c0
vi,w : w ∈ V }} = {{c0

vk,w
: w ∈ V }}.

Note that (2) holds if and only if {{hash(w) : w ∈ N (vj)}} =
{{hash(w) : w ∈ N (vl)}} and similarly for (3).

This argument shows that in each iteration, color re-
finement in 2-WL is equivalent to implementing 1-WL
in each coordinate. This argument inductively shows that
2-WL(vi, vj) = (1-WL(vi), 1-WL(vj)) and therefore it has
the same distinguishing power as 1-WL.

Remark 2. The discriminating power of k-WL is equivalent
to the one of (k−1)-FWL for k ≥ 3. To the best of our knowl-
edge, there is no explicit proof of the equivalence only relying
on the definitions of k-WL and (k−1)-WL. However, in Sec-
tion 5 of [14] the authors prove that (k−1)-FWL is equivalent
to Ck, the set of quantified first order formulas of G = (V,E)
in k variables1. This proof is reformulated in Theorem 3.5.7
of [17] for k-WL, showing that k-WL is equivalent to Ck.

Remark 3. For some applications it makes sense to consider
weighted graphs, or more generally, graphs with edge features
G = (V,E,XV , XE) where Xe ∈ Rm for e ∈ E. Although
the classical WL test is not equipped to deal with edge fea-
tures a priori, the higher dimensional versions of the test can
be easily extended to work with edge features by extending
the definition of hash(G[~v]) to consider edge features.

3.5. Example: 2-WL and 2-FWL on regular graphs

Below we show a canonical example of two regular non-
isomorphic graphs (Figure 1), where the classical WL test
and 2-WL test both fail to distinguish, but 2-FWL succeeds.

Fig. 1. Two graphs can not be distinguished by WL and 2-
WL, but can be distinguished by 2-FWL.

We first go over the steps for 2-WL, illustrated in Figure 2.
For simplicity we assume that all node features are the same.
At the initialization, there are only two isomorphic types: (1)
(vi, vj) ∈ E (i.e, connected); (2) (vi, vj) /∈ E (i.e., not con-
nected). We color ~v as yellow for type (1) and grey for type
(2). As shown in Figure 2 left panel, G0 and H0 (the coloring

1One example of such formulas is ∀x1∃!dx2(E(x1, x2)). This means
that for all x1 node in G, there exists exactly d nodes x2 (! means exactly)
such that there is an edge between x1 and x2 (i.e. the graph G has degree d).



Fig. 2. 2-WL color assignment at initialization G0, H0 and
refinement at first round G1, H1. The color refinement stabi-
lizes in one step, failing to distinguish G and H

at initialization) has the same elements with equal multiplic-
ities (24 greys; 12 yellows), and thus they produce the same
hash value. Now, we can view V 2 as a 6 × 6 matrix, and
the neighbors of a tuple (vi, vj) is given by the j-th row and
the i-th column. Examples of neighbors for (3, 3), (3, 2) are
shown in middle inset of Figure 2. Observe that for any node
in G0, c1

~v,1 = c1
~v,2 = {{4 greys, 2 yellows}}. Thus all nodes

have the same neighborhood but may differ in the initial color.
Let hash(grey, c1

~v,1, c
1
~v,2) be orange, hash(yellow, c1

~v,1, c
1
~v,2)

be brown, and we obtain G1, H1 as shown on the right panel
of Figure 2. Notice that the color patterns (i.e., the multiset
of G,H) do not change after the first iteration, and thus the
2-WL test terminates, which fails to distinguish G and H .

Figure 3 illustrates the color refinement of 2-FWL. Note
that 2-FWL has the same color assignment as 2-WL at the ini-
tialization. However, 2-FWL defines the tuple neighborhood
as n elements of length 2, unlike 2 vectors of length n in 2-
WL. Examples of neighbors defined by 2-FWL are shown
at the right panel of Figure 3. Now, there are 3 isomorphic
types in G0, which are hashed as brown, blue, and orange.
Intuitively, they represent 0-hop, 1-hop, and disjoint neigh-
borhood in G, respectively. In contrast, H has 4 isomorphic
types hashed as brown, purple, green, and orange, which char-
acterizes the 0, 1, 2, 3-hop neighborhood in H . Hence, in the
first iteration, 2-FWL outputs two different color patterns for
G and H . One can check the refinement stabilizes in one step,
correctly concluding that G and H are non-isomorphic.

Fig. 3. 2-FWL color refinement at first round G1, H1 outputs
different color patterns for G and H . Thus it distinguishes G
and H , and terminates in one iteration.

4. CONCLUSION

The Weisfeler-Lehman test and its k-dimensional generaliza-
tions are powerful tools to study the expressive power of in-
variant functions on graphs. Mathematically, this test is very
well understood thanks to the work by Cai, Furer, and Immer-
man in the 90’s and the work by Grohe and collaborators in
the past decade.

In the context of graph neural networks, the Weisfeiler-
Lehman test has been used to analyze their theoretical proper-
ties. It has also inspired the design of expressive and invariant
GNN architectures.

In this work, we explain the context of k-WL and k-FWL
and provide a simple tutorial that illustrates the differences
between them. We refer the reader to [23] for a comprehensive
survey.
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